Bayesian Methods in Artificial Intelligence
نویسنده
چکیده
In many problems in the area of artificial intelligence, it is necessary to deal with uncertainty. Using probabilistic models can also improve efficiency of standard AI-based techniques. Commonly used methods for dealing with uncertainty include Bayesian models, which can be used to describe and work with probabilistic systems effectively. This article reviews several models based on the Bayesian approach and typical algorithms used to work with them, along with some examples of their application.
منابع مشابه
Bayesian perspective over time
Thomas Bayes, the founder of Bayesian vision, entered the University of Edinburgh in 1719 to study logic and theology. Returning in 1722, he worked with his father in a small church. He also was a mathematician and in 1740 he made a novel discovery which he never published, but his friend Richard Price found it in his notes after his death in 1761, reedited it and published it. But until L...
متن کاملRobust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملAn Epistemological Comparison between Fuzzy Logic Engines and Bayesian Filters
In this paper we analyze two methods of artificial intelligence: the Bayesian filter and the Fuzzy Logic engine. In order to do this we present each method and compare them. The mentioned methods have similar backgrounds but from epistemological point of view they are different. The paper ends with three case studies: the first about a Fuzzy Logic engine which is integrated into a Bayesian filt...
متن کاملAn Overview of the Artificial Intelligence Applications in Identifying and Combating the Covid-19 Pandemic
Intruduction: In late 2019, people around the world became infected with Covid-19 by the outbreak, the pandemy and epidemy of this disease. To this end, researchers in various fields are seeking to find solutions to the problems related to the control and management of crises. The transmission power of the new corona virus has drawn the attention of experts in the use of artificial intelligence...
متن کاملComparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds
Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010